
POLITECNICO DI MILANO
Computer Science and Engineering

School of Industrial and Information Engineering

Less is More (secure)
Deprecator: automated reduction of the

attack surface in modern Browser

Relatore: Prof. Stefano Zanero
Correlatore: Prof. Engin Kirda
Correlatore: Prof. Michele Carminati

Tesi di Laurea di:
Tommaso Innocenti, matricola 837744

Anno Accademico 2016-2017

Ringraziamenti

Finalmente sono alla fine di questo capitolo della mia vita, guardando in-
dietro mi rendo conto di quanto io sia diverso e di quanta strada sia stata
percorsa da quel primo giorno. Voglio ringraziare tutte le persone che hanno
fatto parte di questo mio personale percorso, per averlo reso uno dei periodi
più belli e pieno di ricordi di sempre.

Desidero ringraziare il prof. Stefano Zanero, per la gigantesca opportu-
nità che mi ha offerto con questa tesi e per i tutti i suoi corsi che mi hanno
introdotto al campo della sicurezza informatica. Ci tengo a ringraziarlo
anche per il costante supporto che mi ha fornito durante tutta questa espe-
rienza di tesi all’estero.

Un grande ringraziamento va al prof. Engin Kirda che mi ha accolto nel
suo laboratorio a Boston e mi ha fin da subito fatto sentire parte del gruppo,
ovviamente un grande ringraziamento va anche a tutto il gruppo del SecLab
di Boston per il sostegno e i consigli.

Un ringraziamento speciale va al mio coinquilino Gino (Mamma africa)
al quale devo dire grazie per essermi stato sempre vicino e avermi sempre
sostenuto.

Un grazie speciale va a Giulia, la mia splendida ragazza, grazie per esserci
sempre e per tutto l’aiuto e l’amore che mi hai sempre dato, spero riusciremo
presto a vivere il nostro sogno americano.

Infine un grazie a tutta la mia famiglia per avermi sostenuto nei momenti
difficili e per il grande supporto che mi avete sempre dato. Grazie per avermi
aiutato a seguire i miei sogni e spronato a dare il meglio di me. Spero di
essere in grado di ripagare tutti gli sforzi che avete fatto per sostenermi
lontano da casa.

3

Contents

Ringraziamenti 3

Abstract 7

Sommario 9

1 Introduction 13

2 Background and Motivation 17
2.1 Browser evolution . 17
2.2 Threats . 18

2.2.1 Browser fingerprinting 19
2.3 Related work . 20

2.3.1 Countermeasure proposed 21
2.4 Motivation . 22

3 System Approach and Implementation 23
3.1 Internal vs external . 23

3.1.1 Deprecator approach 26
3.2 System Architecture . 28

3.2.1 The hook . 28
3.2.2 The controller . 29

3.3 System integration . 31
3.3.1 Instrumentation . 33

4 Experimental validation 39
4.1 Attack surface reduction . 39

4.1.1 Experimental setup . 40
4.1.2 Data elaboration . 41
4.1.3 Result . 43

4.2 Performance overhead . 44

5

4.2.1 Page load time . 44
4.2.2 Extraction of data . 47
4.2.3 Usability and stability 48

5 Limitation and future works 51
5.1 Browser fingerprinting . 51
5.2 Limit of the approach . 51
5.3 Future work . 52

6 Conclusions 53

Bibliography 55

A Default configuration 59

B Full data performance evaluation 63

Abstract

Browsers, since their introduction, have started to integrate a large set of
functionalities that are accessible by Web pages. Unfortunately this has
attracted malicious actors that have started to use security breaches in all
the parts of the browser to pursue their goals. Other than that, part of the
available functionalities are barely used but, at the same time, they have
sprung the growth of an invasive phenomenon: the browser fingerprinting.
An invasive technique that, without the users’ approval and without leaving
any trace, allows Web sites to associate a unique ID to each user that visits
the Web site. Monitoring this ID over the net allows to infer the Web history
and the users’ interests. The sensitive information obtained has been used to
generate target advertisement able to increase the multi billionaire business
of the big Internet players of the advertisement market.

In this thesis we present Deprecator, an integrated module of Chromium,
able to change the passive position of users, giving them the chance to decide
which functionalities to expose to the Web sites. Deprecator achieved this
goal using an internal instrumentation of the functionalities of the browser.
It was possible to generate a general model that encapsulates the usage of
functionalities among Web sites, by using the functionality of Deprecator
to record the usage of the instrumented functionalities. The information ex-
tracted from the model identifies 25 standards that can be limited by the
prevention system of Deprecator over the 71 analyzed. Thanks to the
internal approach chosen to integrate Deprecator, our module is unde-
tectable from the outside; this guarantees the impossibility for attackers or
trackers to escape from the strict policy enforced.

Deprecator has been tested over several measurements to ensure its
performance and the goodness of the approach. This achieves a 28% of
increase in the general performance compared with an unmodified browser.
Our new module arose the privacy and security of the final user, showing it
to be fully compatible with the first 100 Web sites of the Alexa ranking.

7

Sommario

Sin dalla loro prima comparsa, i browser hanno seguito un costante trend
di crescita, aumentando considerevolmente le proprie funzionalità ed in-
evitabilmente incrementato la propria compressità interna. Tutte le fun-
zionalità del browser sono rese disponibili ai siti internet, anche se la gran
parte di queste ha mostrato uno scarso utilizzo. La politica di sicurezza
delle Web API all’interno del browser è rimasta la stessa, anche se le fun-
zionalità aggiunte in questi anni sono state numerevoli e hanno aperto nuovi
scenari. Queste nuove funzionalità hanno fatto si che i browser diventassero
la più grande piattaforma globale di sviluppo di applicazioni. Questo ruolo
di prestigio unito alla quantità di informazioni sensibili gestite ha fatto
si che attackers e malicious actors rivolgessero la propria attenzione verso i
browser. Gli attacker hanno dimostrato di poter sfruttare le vulnerabilità in
ogni parte del browser, ogni anno dimostrandosi in grado di superare le difese
messe in atto dai browser. La buona notizia è che per superare i moderni sis-
temi di sicurezza è necessario la concatenazione di multiple falle di sicurezza,
ne è l’esempio un recente exploit che concatena 14 vulnerabilità .

Oltre a questo la sempre più redditizia attività legata agli annunci pub-
blicitari su internet ha fatto si che le grandi aziende abbiano rivolto la propria
attenzione verso i browser. Infatti vista la grande quantità di informazioni
sensibili gestita, si è sin da subito capito che sfruttando tali informazioni
si sarebbero poàtute creare campagne pubblicitarie mirate sui reali interessi
degli utenti. Per ottenere tali informazioni le attività degli ignari utenti sono
state registrate, si è cos̀ı sempre più diffusa la pratica del tracciamento degli
utenti sulla rete. In principio attraverso i cookies che sono stati largamente
sfruttati in maniera impropria per fini di tracciamento degli utenti. Dopo
che tale pratica è stata regolata e ritenuta illegale si è passati ad una più
sofisticata tecnica di tracciamento degli utenti il browser fingerprinting, una
tecnica che permette in maniera del tutto invisibile di tracciare gli utenti.

Il browser fingerprinting si basa sulla creazione di un Id unico per ogni
utente che visita un sito internet, tracciandone il percorso sulla rete perme-

9

tte l’identificazione della cronologia e degli interessi dell’utente. La creazione
di questo Id da parte dei siti internet si basa su sofisticate tecniche che per-
mettono la raccolta di informazioni uniche relative al browser che visita il
sito, tali da renderlo unico. La raccolta di tali informazioni è stata possibile
grazie alla libertà di cui godono i siti internet, infatti i siti internet hanno
accesso a molteplici funzionalità e sono in grado di sfruttarle a loro piaci-
mento. Purtroppo gli utenti non hanno uno strumento per limitare questo
invasivo fenomeno, essendo che non è possibile limitare le funzionalità rese
disponibili. Oltretutto tale tecnica risulta invisibile da parte degli utenti,
non modificando in alcun modo l’aspetto delle pagine, l’unica azione richi-
esta che ne consente l’attuazione è la visita da parte dell’utente della pagina
internet.

La comunità scientifica ha rivolto la sua attenzione sulla questione della
sicurezza dei browser e con lo studio di Nik Nikiforakis è stato evidenziato
come questa tecnica del browser fingerprint può essere mitigata andando a
manomettere i valori usati per identificare il browser tra gli altri browser. Lo
studio condotto da Peter Snyder ha invece dimostrato come con lo sviluppo
di un apposita estensione sia stato possibile limitare le funzionalità ben note
per essere usate per tracciare gli utenti. Entrambi i lavori dimostrano come
sia possibile mitigare questo fenomeno cosi invasivo, quello che però non
riescono a fornire è una soluzione efficace che possa risolvere il problema.
Infatti Nick Nikiforakis con il suo lavoro puramente dimostrativo afferma
come sia possibile limitare la precisione di questo problema agendo sui valori
usati. Mentre Peter Snyder dimostra come con un estensione sia possibile
per un utente limitare queste funzionalità e avere un browser funzionante.
La soluzione proposta è si di facile adozione per gli utenti, ma solo in rari
casi le estensioni hanno ottenuto un’adozione tale da poter contrastare in
maniera adeguata il problema affrontato.

Mossi dall’intenzione di restituire all’utente la possibilità di gestire e
controllare il browser abbiamo sviluppato Deprecator, un modulo interno
di Chromium in grado di restituire all’utente il controllo sul browser e delle
sue funzionalità. L’obbiettivo di Deprecator è stato ottenuto grazie a un
instrumentazione interna delle funzionalità del browser. L’instrumentazione
del browser è stata automatizzata tramite l’uso di una apposita procedura
che sfrutta gli IDL file presenti in Chromium facilitando l’individuazione
delle funzionalità da instrumentare. L’instrumentazione delle funzionalità
del browser ha permesso il monitoraggio di quest’ultime svolgendo un ampio
studio di come queste funzionalità vengono usate dai siti internet. Da questo
studio è stato possibile identificare 25 standard tra i 71 standard analizzati
da rimuovere dal bowser. La rimozione di tali funzionalità è stata possibile

grazie all’uso della funzionalità di Deprecator di prevenire l’esecuzione
di alcune delle funzionalità instrumentate. Oltre a prevenire l’esecuzione di
queste funzionalità il nostro modulo da all’utente la possibilità di specifi-
care tramite una configurazione la propria policy di sicurezza: ovvero quale
funzionalità esporre ai siti internet. La soluzione da noi proposta grazie
all’approccio interno risulta invisibile dal punto di vista degli attackers o dei
trackers, questo fa si che non sia possibile sfuggire alla rigida impostazione
di sicurezza che impone il nostro modulo. Oltretutto la possibilità di in-
tegrare il sistema all’interno del browser suggerisce come sia possibile per
i produttori integrare tale sistema nei browser, permettendo di elevare la
sicurezza e la privacy di tutti gli utenti

Il modulo da noi proposto è stato in grado di offrire un aumento delle
prestazioni generali del browser del 28%, tale valutazione è stata possibile
grazie ai numerosi test ai quali è stato sottoposto Deprecator. I risultati
ottenuti oltre a mostrare un aumento di prestazioni sono stati in grado di
mostrare la totale compatibilità del modulo con i primi 100 siti del ranking
Alexa, e testarne la stabilità del sistema che si è dimostrata impeccabile
durante lo svolgimento di tutte le misurazioni effettuate.

12

Chapter 1

Introduction

Internet has become part of everyone’s daily life; most of people do not even
realize how Internet has permeated their life. In every room of a house there
is a device able to access the Internet: a smart scale, a smart TV, a surveil-
lance IP-cam and other different devices. Even without considering these
devices, it is evident that the society nowadays relies on the Internet infras-
tructure for almost everything: managing stocks, reading news, accessing
home banking and even socializing.

The primary interface used from the users to connect to Internet and
to perform the daily activities is the browser. Since its beginning as an
hypermedia dissemination platform, browsers have become more and more
important. In order to support all the different activities of all the users, the
browsers have increased the available functionalities and have unavoidably
increased also their internal complexity. This growth has been driven by the
intense competition that browser vendors face against the popularity and
the diffusion of native applications in smartphones. In order to compete,
vendors have started to include in browsers a wide spectrum of capabilities
like the access of the users’ sensors, the webcam, the users’ location and make
asynchronous requests. These new introduced capabilities have transformed
the web in the world’s largest open application platform.

However, the security model underlying the browser Web API has re-
mained largely unchanged. The security model applied grants to the Web
pages the full access to the capabilities of the browser; mostly without having
any chance for the users to limit them. The security model and the several
sensitive information that pass by the browser have attracted year by year
the interest of malicious actors. The attackers can leverage vulnerabilities
in any part of the browsers’ functionalities in order to exploit the user’s
machine and to be able to steal sensitive information or to install malware.

Browser vendors have tried to increase the security of the browsers, in-
troducing multiple security mechanisms able to prevent or mitigate known
vulnerabilities eg: the same-origin policy. This security mechanism consists
in isolating each tab of the browser, dividing each tab in a different process
and sandboxing each one of them. Despite these security defenses, every
year browsers suffer from the discovery of new exploits, which had to take
advantage of many vulnerabilities to successfully conclude the attack. A re-
cent exploit [3] required a chain of 14 vulnerabilities in order to successfully
exploit the browser.

Due to the relevance of the problem, and to the technical issue involved,
the research community has moved its attention over browsers’ security. One
of the most relevant works is the analysis conducted by David Kohlbrenner et
al. [18] that has demonstrated how it is possible to overcome the defense in-
troduced by browser vendors and to continue accessing the possibilities to de-
termine the exact precision of the clock. Accessing this functionality through
the timing channels of a Web page’s JavaScript code enables the execution
of sophisticated fingerprinting code. Other relevant works [15, 19, 20, 8, 9]
have studied how browsers can be used to track users among Web sites
for advertisement purposes. The market size of the Internet advertisement
[22] is remarkable; it has reached in 2017 223 billion dollars. Advertisement
companies take advantage of all possible techniques to increase their profit
using sophisticated methods and also browser’s vulnerabilities to track users
among domains to gather sensitive information.

As a consequence, researchers have developed several solutions. Nick
Nikiforakis in his work [23]has shows that the browser fingerprinting issue
can be mitigated by poisoning the known values used to track users. Also
the work of Peter Snyder [27] has demonstrated, by developing an extension,
how it is possible to restrict the access of some of the known features used
to track the users. Both of the works agree with the idea that limiting the
access of known features used to track the users will increase the security
and privacy of the users. On the other hand, both of them lack in proposing
an effective solution for the issue. The work of Nick Nikiforakis is a purely
demonstrative work proving the goodness of the approach while the work
of Peter Snyder proposes a solution that mitigates the issue but ignores the
security implications related to the extensions and their real effectiveness.
Indeed extensions are the first tool that allow users to integrate function-
alities that are not part of the core of the browsers. The advantage of the
extensions is the ease of develop it and the sophisticated actions that can be
perform over the browsers. The problematic is that only in rare cases exten-
sions have achieved a good rate of adoption able to mitigate the related issue

14

they face. Also several studies [11, 17] have warned about the criticality of
vulnerabilities in extensions; this is due to the fact that browsers impose
over the extensions a weak security policy. This privilege gives the ability
of performing sophisticated actions to extensions but has also demonstrated
how severe are the consequences of vulnerabilities in extensions. One other
solution that has recently increased its popularity is the Tor browser; it tries
to prevent the users’ tracking while surfing the web. The solution adopted
by Tor is trying to provide the same values for all the users to the known
values used to track users; this mechanism, tries to provide the same finger-
print for all the users, reducing the precision of the fingerprint and ensures
an higher level of privacy.

All these concerns moved the following question: is it a users’ problem
what browsers expose to Web pages? if it is so, how can users protect them-
selves against it? Surely users should be aware of how intrusive the tracking
phenomenon is. For example, if one searches on the Internet for a new pair of
shoes, a while after in every Web page visited appear shoes advertisements.
To fight this invasive phenomenon is necessary an ethic discussion that in-
volves not only experts that are trying to fight it, but also all the society.
Nowadays, there is not a tool to completely prevent the browser fingerprint-
ing, it is hard to distinguish the right usage of capabilities by Web sites and
the malicious usage by fingerprinting scripts. What is demonstrated from
the work of Peter Snyder [26] is that large part of the browsers’ capabilities
are not used from the majority of the Web sites. Attackers can leverage vul-
nerabilities in all parts of the browser, also the unused parts, this exposes
the users to severe security implications.

The first question we want to answer with this thesis is: is it possible
to exclude all these unused capabilities and still have a functional browser?
The answer is positive, indeed Deprecator is an integrated module of
the Chromium browser able to restrict the usage of functionalities while
preserving the functioning of the browser.

The design of Deprecator draws on Peter’s Snyder data set [26], indeed
his data has been used as the starting point to the instrumentation of the
browser’s functionalities. To simplify the instrumentation of the Chromium
browser we have designed an automated approach able to fully automa-
tize the instrumentation process. The automated process uses IDL file to
automatically find the target files where the functionalities of Chromium
browser are implemented. Once the target files have been obtained, the
browser is instrumented using a refactoring tool. This tool automatically
inserts our module and compiles the code producing the modified version of
the Chromium browser.

15

The characteristic that differentiates Deprecator from the solution
proposed by Peter Snyder in his work [27], is that our module uses and
internal approach. The internal approach guarantees the invisibility from the
outside of the browser. Attackers and trackers are not able to distinguish
a browser with our module from one normal browser. This fundamental
characteristic, combined with the hard-coding of the solution in the browser,
prevents escaping from the strict security policy enforced.

Using the ability of our module to record the usage of instrumented
functionalities, it has been possible to extend the analysis of the usage of
functionalities among Web sites. The information obtained from this analy-
sis allows the extraction and modeling the functionalities’ behavior in Web
sites. With these information it was possible to generate a configuration file
used by Deprecator that defines the functions that have to be restricted.
The configuration file can be tailored over the needs of each user, the user
can decide what to disable. Indeed the module allows the total configurabil-
ities of the instrumented functionalities, this permits to limit the undesired
functionalities. Thanks to this ability Deprecator achieves the goal of giv-
ing back to the users the control over the browser and its functionalities.
Also, in the default configuration file provided with the module, the known
functionalities used to track the users are limited. With this configuration
of the module, the collateral benefit is that the work of trackers becomes
harder.

Deprecator has been tested during several measurement in order to
ensure its goodness, giving as result a 28% of increase in the general perfor-
mance of the browser compared with an unmodified browser. Deprecator
has also demonstrated to be fully compatible with the first 100 sites of the
Alexa ranking while improving the security of the entire browser.

The main contributions of this work are:

• The design of a mechanism able to automatize the instrumentation of
the browsers

• A system able to give back to the user the control over the browser
and its exposed functionalities

• The first integrated solution for the tracking issue

16

Chapter 2

Background and Motivation

In this chapter is first provided a brief introduction of the browsers’ history,
then is presented one of the most important threats that currently afflicts
the browsers: the browser fingerprinting. Following are described the pri-
vacy implications of this invasive phenomenon and its evolution. Then, are
described various solutions on this issue proposed by other related works.
Finally is presented what we want to achieve with Deprecator and the
motivations that moved this work.

2.1 Browser evolution

Browsers provide the window to the Internet that million of users use daily.
Technologies that support the interactions of users evolve with an incredible
rapidity, lets just think about the computing power that twenty years ago
was inaccessible and that now is in our hands. Browsers have followed the
same path of evolution to embrace the new available technologies and new
capabilities in order to adapt the users experience to the new opportunities
available. This evolution has drastically changed how Internet is perceived
from the users. At the beginning Internet was just a series of static pages,
now Web pages embed all new kind of interactions and provide a dynamical
interaction and a constant growing engagement for the users.

The Chrome browser, one of the most popular browsers, is a clear ex-
ample of how fast a browser changes, it has a release cycle of just six weeks.
This high frequency of changes is great: it allows a constant update of new
standards and new capabilities although another side to the coin is that this
constant addition of code has incredibly increased the code’s complexity.
Looking at the number of lines of the Chromium code [4] it is possible to see

17

that in 2016 it has overstepped the 20 MLOC1 and on 2019 it is expected to
reach the 30MLOC: For example, in comparison the latest2 Linux kernel [5]
has recently surpassed the 20MLOC. This incredible growth has been facil-
itated by the definition of standards, indeed almost all the functionalities
provided by browsers are standardized by the W3C3. The standardization
has permitted to have the same functionalities across multiple browsers in-
creasing the compatibility but it has also shared the same problematic across
all browsers.

Not all of the new capabilities are equally used, indeed most of the
functionalities that have been added where due to the competition that
browsers have to face with the native application of smartphones. Despite
the fact that a large part of the browsers code has a poor usage, browser
vendors are very wary in removing functions. Other than that browsers share
the majority of the code base with the respective application for mobile
devices, leaving on the desktop code functionalities that are designed for
mobile devices. This means that JavaScript features that rely on hardware
functionalities are included in the browser code without even addressing the
problem if the machine has the hardware to support it.

2.2 Threats

Thanks to their increased popularity, to the quantity of sensitive information
they processed and to the diffusion that they have achieved, browsers have
attracted the attention of malicious actors. Malicious actors have found in
browsers an ecosystem big as an operating system but with a weak security
policy. Indeed browsers leave to the Web pages the full access to all the
available capabilities, without providing the possibility to limit the exposed
capabilities. Most of the users use the browser without even knowing all
the possible security threats that they are facing. The largest part of the
problems arises with the indiscriminate integration of functionalities within
the browsers.

These additions have influenced negatively also the Web pages that have
started to increase considerably their size, the increase is so big that nowa-
days it is tagged as the Web Obesity Crisis [13]. The crisis’ effects are evident,
one of these is the load time of Web pages that is increased due to the inclu-
sion of heavy JavaScript codes and complex CSS that as result slow down
the general experience of surfing the web.

1MLOC: Million of Lines of Code
2Version: 4.15.8
3W3C: World Wide Web Consortium

18

2.2.1 Browser fingerprinting

One of the most invasive problems that currently affects the modern browsers
is the tracking of users across web domains. This invasive technique has been
largely used for commercial purposes, indeed knowing the domains surfed
by the users is a sensitive information that allows the creation of tailored
strategies of advertisement that match the users’ interests.

The Web pages that track the users, use sophisticated techniques to col-
lect a rich fingerprint of the browser, these techniques allow the association
of a unique identifier for each of the users that visit a site. This associa-
tion enables the combination of multiple tracks of the same unique id across
domains allowing the extraction of the history related to that unique id.

The Browser fingerprinting problem arouses around 2011 when the EU
and the US law makers took actions against the Web sites to fight third-party
cookies and to limit the unnecessary cookies to be used. Indeed until 2011
cookies have been largely misused from third parties to track users across
domains and to retrieve their navigation history. From 2011 fingerprinting
techniques have constantly improved their approach and precision taking
advantage of all the possible data that can be extracted from the users’
browser. The Web pages use JavaScript scripts to collect the fingerprint of
the browser. Executing the fingerprinting code in the users’ browser allows
to collect a variety of information and to send it back to the servers. All
the collected information is elaborated, permitting the extraction of unique
bits of information that combined generate the unique id which uniquely
identifies the user from all the others users.

Trackers decided to use the JavaScript code, that initially was included
in the browsers to automatically update the GUI4 of the browser, because
its characteristic of dynamic code generation enables to load at run time li-
braries able to collect and generate a sophisticated fingerprint of the browser.
This particularity of JavaScript allows third parties to escape all the static
analysis of the code executed in a Web page. Besides this, combining multiple
techniques such as code obfuscation and dynamic code generation, trackers
can easily escape the weak restriction of Web pages.

Although there is to point out that the fingerprinting techniques have
been also used to prevent malicious intents, indeed there are cases where
they have been used to prevent fraud and cyberattacks. These cases are
controversial with companies that use database of billions of devices id to
determine the security risk associated with the devices used, claiming that
fingerprinting is a “security” technique used to protect users. What is clear

4GUI: Graphical User Interface

19

is that a consciousness and a society debate are needed in order to regulate
what is right and define what is bad.

Browser vendors on their side are largely unprepared to fight against
this sophisticated phenomenon. They have tried to limit the precision of the
fingerprint that can be extracted by adopting countermeasures that have
revealed to be insufficient. Indeed the new sophisticated techniques used,
combined with the adopted policy to expose every feature to the Web pages,
makes ineffective all the recent efforts to fight this phenomenon.

2.3 Related work

The main goal of Deprecator is not to solve the problem of browser
fingerprinting but to give back to the final users the control of the browser
letting the users decide what features expose to Web sites. One of the main
implications of the goal accomplished by Deprecator is to make harder the
role of tracker limiting the exposed features that could be used to generate
the fingerprint. In this section are presented the most relevant works about
browser fingerprinting and the solutions proposed for this problem.

Firstly is presented the work of David Kohlbrenner et al. [18], this is one
example that shows how the countermeasure adopted by browser vendors
are weak and unable to limit the tracking phenomenon. Indeed David has
demonstrated that it was possible to infer the exact precision of the clock
even if the browser tried to provide by the timing channels a degraded
precision of the clock to the JavaScript code. He has also discovered even
other possibilities to infer the exact timing without using directly a timing
channel. The timing channels are used to measure with a high precision the
execution time of a defined portion of code, this information has been used
from trackers to identify the device that has executed the code.

Every year there are new studies that discover new sophisticated tech-
niques to fingerprint the defenseless users. One of the most recent is the
work of Yinzhi Cao et al. [12] that has demonstrated how it is possible to
generate a unique fingerprint of the user’s machine even if the user uses
different browsers to access a Web site.

This result has been enabled by the standardization of features across
browsers, as previously mentioned the standardization has accelerated the
growth and evolution of the features of browsers but has also shared the
same problematic across browsers. Looking at the work of Yinzhi Cao it
is clear how fingerprinting techniques have evolved their ability and have
achieved a precision that allows the creation of the same fingerprint even
across browsers. This means that third parties have achieved a precision

20

able to identify the machine that executes the browser. This information
can allow an even more invasive track of people understanding if different
accounts are managed on the same computer as it can usually happen in a
family.

The evolution of fingerprinting techniques since 2010 is pretty impressive.
One of the first studies of this phenomenon, the work of Peter Eckersley [14],
using techniques that nowadays could be considered rudimentary, discovered
the leak of 18.1 bits of entropy from browsers and he was still able to identify
the 94.2% of the users starting the discussion on this phenomenon and the
related implications.

2.3.1 Countermeasure proposed

Multiple researchers have tried to fight the phenomenon of tracking and
purposed adequate countermeasure. Unfortunately protecting against this
type of threat is difficult, the techniques used to collect sensitive information,
looking from the users’ point of view are invisible indeed to work, they do
not need to store anything in the user’s machine, the only needed action is to
visit the Web page. Nowadays the users do not have a way to face completely
against this abuse, indeed to prevent it the only solution will be to make
inaccessible the values used to generate the fingerprint. Unfortunately it is
hard to distinguish proper and malign usage and sadly the policy of browsers
is to expose all the features available to the Web pages.

The work of Nick Nikiforakis et al. [9] proposes to poison the values
captured by trackers with white lies randomizing the values collected to in-
troduce a level of uncertainty in the fingerprint extracted. This approach
tries to mitigate the phenomenon by showing that randomizing some values
that are known to be collected by fingerprinting scripts would reduce the
precision of the fingerprint collected. It is possible to argue that randomiz-
ing value could affect the behavior of benign sites or that collecting a non
randomized value would reduce drastically the uncertainty created. Another
problem that could be considered is the overhead introduced by altering the
value or that the countermeasure is easy to be detected from the tracker,
indeed requesting multiple times the poisoned value and comparing the val-
ues obtained, the fingerprinting script can detect it and adopt a different
strategy.

A slight but similar approach has been used by the Tor browser [6] that,
on purpose, tries to provide the same value across users to make it indistin-
guishable from one another. Other than that Tor will add a three layer of
encryption over the system that manages the communication between user

21

and host, making impossible even for routers to link source and destination
of data stream. The Tor browser, to achieve this level of anonymity, happily
sacrifices the usability of the browser.

With the rapid growth and the new techniques adopted it is quite im-
possible to create a definitive solution that solves the problem. One solution
for the problem is to push for a society debate on the problem that could
stimulate the rethinking of the browser policy and improve the security and
privacy of users. There is a positive example that is the ad-block extension
that, in 2002, with the first release, started to fight the indiscriminate usage
of advertisement, moved by a society discussion and desire it has moved the
browser vendors to take actions directly. In 2018 [1]Google has included a
functionality of ad-blocking in its browsers.

2.4 Motivation

In Section 2.1 has been presented the evolution of Browsers and in Sec-
tion 2.2 one of the most important threats related to this indiscriminate
growth of functionalities in the browser. Now it is presented what we want
to achieve with this work: to prove that it is possible to change the direction
of this growth trend. Starting from the fact that most of the functionalities
are unused by the majority of the Web pages [26], we want to relieve the
browser from all the heavy and potentially dangerous functionalities. Dep-
recator, using its ability of limiting functionalities, will give back to the
users the chance to control the browser. Using our module, the user can
tailor the browser over its need, this implies having the desired functionality
to perform the daily activities while limits as much as possible the undesired
functionalities. The result of this customization is a browser able to perform
the required tasks and at the same time able to provide a secure and fast
experience to the user. The goals of the work could be summarized in:

1. To develop an automated tool able to transform any given version of
Chromium to a feature-instrumented browser

2. To generate a map between high functionalities and low level features
able, with an integrated mechanism, to reduce the attack surface and
to give back to the user the direction over the browsers’ functionalities

3. To develop the first integrated solution to the fingerprint issue that
breaks the current state-of-the-art

22

Chapter 3

System Approach and
Implementation

In this chapter is analyzed the fundamental design choice of the approach
of the module we design. In the following section are illustrate two possible
approaches, internal and external, highlighting their respective benefits and
problematics. For both the approaches are provided examples from other
related works. Then are illustrated the motivations that moved the choice
of approach for Deprecator, and how the challenges related to the chosen
approach have been solved. Finally are described the design choice behind
the chosen structure for our module and the process of integration in the
Chromium browser.

3.1 Internal vs external

The choice of approach was between internal or external, as it can be imag-
inable each of the approaches has its benefits, and in this section both of
them are presented with their own characteristics.

By external approach is meant a modification that does not change the
code of the browser as it can be an extension. There are a lot of extensions
able to arise the security of the browser, some examples could be Ad-block or
Ghostery. The external modification of the browser has the benefit of being
easy to develop and of still being able to perform sophisticated actions. In-
deed the browsers for the extensions impose an even more permissive security
policy compared to the normal Web pages. As it has been already presented
in Section 2.2 the Web pages are under a more than enough permissive se-
curity policy. Thanks to this permissive policy, attackers have oriented their
attention over the extensions, indeed extensions are allowed to perform ac-

tions in each tab of the browser and to extrapolate information from each
tab. This permissive position allows the overcome of the security system im-
plemented to isolate each tab and to impose the same-origin policy. There
are multiple studies [29, 17, 11] that have discovered how extensions have
been used to leak the private information of unaware users. Other than that
extensions are visible from the outside of the browser, this implies that web
sites could determine for the list of extension installed and it has been proven
that trackers use this information to enrich the fingerprint of the browser.

The Chromium browser has modified the permission of installing exten-
sions from unknown sources forcing a strict security policy that forces the
developer of an extension to pass through a process of validation of the ex-
tension before it is available for the download in the extensions store. Even
if Google has adopted this security check some extensions have been able
to pass the check test and to perform malicious intent. To protect the users
Google has designed a system that allows to register each installation of the
extension over the browser and if an extension is reported to be malicious
it can be remotely removed from the users’ browser.

Looking at the browser fingerprinting issue the list of extensions installed
could provide unique information used from trackers to enrich the finger-
print collected. Also recently Web pages have adopted a form of resistance
against the extensions that block advertisements. Indeed some Web pages
have started to limit the available articles that can be read by the users that
have installed an ad-block extension. Other sites are trying to completely
block the access to the site, forcing the user to insert in the white list the
Web site or disallowing temporary the extension. Another different type of
reaction by Web sites is the Web page of the Boston globe that is trying
to restrict the access to the Web page for the users that use the incognito
mode, forcing them to log in with an account in order to access the Web
page and to read the articles with the incognito mode.

There are two factors that have contributed to the popularity of the ex-
tensions: the simplicity of integrating a solution in an extension and also
their granted ability from the permissive policy of browsers. These two fac-
tors have made the extensions the ideal solution for a developer or a re-
searcher who would want to develop a tool to protect against a new threat.
An example is the work of Snyder et al. [27] that has chosen an extension to
develop a system that intercepts JavaScript code by interposing a proxy ob-
ject able to limit some undesirable functionality. The modification proposed
by Snyder et al. has proved to be effective thanks to the large capability that
an extension has in the browser. Concerning the compatibility the solution
applied has achieved a breaking rate of the 15.71% during the test of the

24

first 200 sites of the Alexa ranking.
For the internal approach is intended the modification that changes the

code of the browsers, as it can be the addition of a module or the instru-
mentation of a function. The internal modifications are harder to develop
because, as explained in Section 2.1, the code of modern browsers could
be compared in terms of complexity to the code of an operating system.
Modifying directly the code allows to hard coding the modification making
resilient the modification to adversaries as other extensions and other types
of evasions from the modification imposed. Instrumenting the code allows to
run the modification with the code of the browser making any modification
of the code invisible from outside of the browser. A script or a Web site can
not understand if the code of the browser executed is the original code or a
modified code.

Researchers have used this approach primarily for testing and demon-
strating purposes, one example is the work of Nick Nikiforakis et al. [23] that
has modified the code of the Chromium browser to test the effectiveness of
poisoning known values used to fingerprinting the browser. The work of Nick
Nikiforakis has proven that poisoning the value is effective and that mod-
ifying the code directly affected less than 1% of the first 1,000 sites of the
Alexa ranking. The internal modification has shown to be effective indeed
the modify is deep and allows the modification to be direct and faster due to
the fact that the modify is executed at the same level of the modified code.
One big problematic that has the internal modification of the code is that
it is time demanding and that, as explicated in the Section 2.1, the code of
the browsers change fast and being able to provide the last version of the
browser instrumented with the modification developed is a hard challenge
that requires a big and constant effort.

The modifications of the browser’s code are more effective in addressing
the issue related with the browsers, even with never known, or the newest one
that combines multiple mechanisms to evade the countermeasures. Indeed it
has been recently discovered a new sophisticated technique of fingerprinting
that uses an additional mechanism to hide its track, as the others it loads
the JavaScript code at run time but after the execution of the script it will
delete the part of the DOM where it has been executed. All of these attempts
are ineffective against the internal modification indeed to accomplish their
purpose the trackers need to run the code on the users’ machine and an
internal modification does not need sophisticated techniques to deobfuscate
the code, it just needs to have the right countermeasure to adopt when
malicious code is executed.

One example is the Tor browser that has been created starting from

25

a version of the Firefox browser that has been modified hard coding the
modifications to the known features used to fingerprint the user, also to the
modified browser has been added a layer of encryption to all the commu-
nications to ensure the anonymity of the users. Tor has shown how, from
2002, the desire of the users of surfing the web, while ensuring a higher level
of privacy, has increased. This desire is reflected by the constant increase of
the user base of Tor, in 2017 it was around three millions of users and it
generated a total traffic over the net of 200Gbit/s [7].

3.1.1 Deprecator approach

For the development of Deprecator it has been taken in consideration
the internal approach. The motivation to choose the internal approach was
driven by the desire to answer the following question: is it possible to elim-
inate the unused function and to still have a functional browser?

The answer is positive, indeed Deprecator is an integrated module of
Chromium able to reduce the attack surface of the browser. In the follow-
ing Section 3.3 will be explained in details how it was possible to integrate
it on top of the Chromium browser. One factor that has inclined to the
choice of the internal approach was the higher compatibility that previous
modifications have achieved compared with the external modification. An-
other important aspect is that the extensions have proven to be effective but
they are lacking in terms of diffusion among users. Also, it is not desirable
to have an extension that reduces the undesired functions but at the same
time makes you more “unique” and so more fingerprintable.

To address the problem of reducing the attack surface the problem has
been tackle from the inside to ensure if was possible to modify the permissive
policy of the browser and still have a functional system. As anticipated in the
previous section the internal approach introduces the challenge of providing
continuously updates, indeed to modify the code of the browser is costly and
with the high frequency, as the browsers are updated, it is an endless race.

To overcome this limitation it has been designed an automated proce-
dure able to takes as input the functionalities that need to be instrumented
and to give as output the instrumented version of the browser with Dep-
recator linked to all the provided functionalities and ready to apply a
strict security policy. The automated procedure was enabled by the usage
of the IDL file that helped in the identification of the “target” inside of the
code of Chromium and with the usage of the clang compiler was possible
to automatically rewrite the code of the browser and to add Deprecator
to the code linking it to all the features to be checked. For more details in

26

the following Section 3.3.1 is explained how the process of instrumentation
of the browser has been automated.

To reduce the attack surface and allow the customization of the browser,
the starting point were the functions extracted from the work of Snyder [26].
The short coming of this work has been modified to create a map of the high
functionality over the low level of features integrated in the browser. Then
through the process of instrumentation was possible to insert the hook, a
part of Deprecator designed to intercept the execution of these features
and to prevent the execution of the features that are defined as potentially
dangerous. The detail of the system, able to intercept and prevent the exe-
cutions of the instrumented features, is described in detail in the following
Section 3.2.1.

What was possible to achieve with Deprecator is the increasing of the
overall security of the browser as it is demonstrated in the Section 4.1.3.
It has been used the same internal approach of the Tor browser and of the
work of Nick Nikiforakis, but with a solution that is a middle-of-the-road
between the two works. Indeed the reduction of the attack surface includes
some of the well known functionalities used to generate the fingerprint of
browsers, this reduction would decrease the precision of the fingerprint gen-
erated and would provide a higher level of privacy to the users. Some of the
functionalities related with the fingerprinting issue that have been limited
are: the WebGL, SVG vector, High resolution time.

The solution proposed from Deprecator is different, it bases its prin-
ciples in the idea of giving back the control to the user that, with the high
configurability of the solution proposed, could decide what to expose and
what to limit. The high configurability of the solution adopted allows the
generation of specific policies, this allows the user to expose the minimum
set of necessary features for the Web sites and in this way reduces the break-
ing rate of Web sites. The solution proposed unaffected the usability of the
browser while providing an increased secure browser with an exposed attack
surface reduced. The system is provided with a default configuration that
reduces the attack surface limiting 25 standards over the 71 analyzed, leav-
ing totally unaltered the usability of the browser. For the full explication of
how has been defined the default configuration the reader has to refer to the
Section 4.1.2.

27

3.2 System Architecture

The structure of the module has been divided in two main components: “the
controller” and the “hook”. In the following sections will be explained the
motivations behind each design choice that drove to the definition of each
component and the interaction between them.

3.2.1 The hook

The first part of the system is the hook, this part is in charge to communicate
with the controller and to apply the policy to the instrumented functions.
In order to actively look, control and eventually prevent the execution of
instructions is necessary to hook the current execution of these instructions
and establish at run time the action to adopt in each case.

The hook is able, starting from a different context, to communicate with
the controller giving it the Function id of the instrumented function, this
is the only information needed from the controller in order to reply with the
respective action to undertake.

Instrumenting a copious number of functions required the design of a
lightweight system that shall be capable of meeting the required functional-
ity. With this objective in mind it was possible to reduce the implementation
of this part of the system at just two lines of code.

As shown in the following listing a sample instrumented function:
1 ScriptPromise NavigatorBattery::getBattery(ScriptState* scriptState,
2 Navigator& navigator)
3 {
4 if(DeprecatorClass::GetInstance()->Block("Function_id")){
5 return ScriptPromise();
6 }
7 // function body
8 return NavigatorBattery::from(navigator).getBattery(scriptState);
9 }

Listing 3.1: Example of an instrumented feature

The second key aspect of the hook is the prevention system, indeed
once the hook has received the policy to undertake from the controller, it
needs to apply the relative action that could be: “Allow” or “Block” to the
instrumented function.

Deprecator’s aim to reduce the attack surface is achieved by logically
avoiding the execution of functions. Avoiding the normal execution of the
function involves not only the instrumented function but also the caller,
that is who has invoked the function and is waiting for a return value.

In order to preserve the integrity of the execution flow of Chromium the
context of the called function must be considered. Returning a different type

28

of value could cause an unpredictable behavior of the system that could end
in a segmentation fault. To preserve the integrity of the Browser in each
instrumented function has been used a crafted hook with a return value
able, when the normal execution of the function is avoided, to let continue
the global flow without breaking it.

The choice of the returning value has been made using the IDL files
where each function is defined as a guide to automate the extraction of the
type for the return value. When it was not possible to automate it, a manual
inspection of the code had to be done to find the right return value. In these
few cases was necessary a manual inspection due to the relaxed definitions
inside the IDL file. Indeed in the IDL file is permitted the definition of a
function with two different return types.

In the code Listing: 3.1 the crafted return value is the ScriptPromise(),
a constructor for the object ScriptPromise that generates an empty object:
the emptypromise. This object enables the avoiding of that specific function
using a safe object that preserves the integrity and stability of the browser.

3.2.2 The controller

The second part of the system is the controller, as previously explained
one challenge that the controller needs to accomplish is to provide to each
instrumented function the assigned action accordingly to the adopted policy.
As well as sending a reply to each hook the controller is also able, using this
communication channel, to track all the instrumented functions.

With the same instrumentation the system could be used for two pur-
poses at the same time: to enforce the policy and to collect data. The
instrumented functions spread all over the Chromium code need to refer to
the same policy, in order to guarantee it the controller has been designed as
a central control unit to store and manage policy. This design choice other
than providing a central control reduces the overhead necessitating to load
the policy to just one for each execution instead of loading it on demand.
The management of the policy in one central point of the system is a key
aspect that allows the controller to change it even at run time for all the
functions at the same time, showing its effectiveness and flexibility.

Once the browser has been instrumented Deprecator is able to change
the behavior of instrumented functions without needing to recompile a sin-
gle instruction but just changing the configuration file where the policy
is defined. Also both the functionality of the system: “collect data” and
“enforce policy” over the instrumented function are managed by the same
configuration file achieving the same effectiveness and rapidity of action. The

29

configuration file provides a fine grain control that permits to change the
behavior of each instrumented function. The behavior could be tailored over
the needs of the user allowing to limit the exposed features based on the
specific policy defined by the user.

Deprecator will be provided with a default configuration with all
the unnecessary features deactivated to simplify the approach of the inexpert
user. For an extended overview of how it has been defined in the Section 4.1.2
is explicated the process of definition, also in the Appendix A is showed the
extended list of standards restricted in the default configuration. The users
do not need to become a security expert to use the system, once they famil-
iarize with the security implications of activating features they could start
managing the configuration and define their own policy. The configuration
file also could be managed with an integrated service able to download the
newest policy file and to apply it to the browser, as it commonly happens
with the extension like ad-block, where the users automatically subscribe to
a list where a community of experts define the list of blocked advertisement.

Acting in a very uncertain scenario where changes and new threats are
discovered daily, software are forced to adapt as fast as possible to fix novel
issues. Being able to change the behavior of an entire system changing just
one file, even at run time, makes Deprecator a desirable module to be
included in every browser.

We could take as example the recent problematic that has afflicted the
Battery API [24]. The research community has investigated and has discov-
ered an important security leak due to the abuse of that API. Investi-
gating further the community aroused a concern in the process of approval
of a new API from the W3C. This discovery solicits the reply of the browser
vendors that, in some cases with an unpredictable action vendors removed
the API from the browser. A drastic approach that solves the problem but
with a guiltily delay of months where the unaware user was exposed to this
issue without having a tool to protect itself against it. Keeping this example
in mind is clear how the design of browsers needed to be revised, introducing
a faster security system able to increase the overall security.

30

Following is showed the functional schema of Deprecator Figure: 3.1

hook

datacon�g

����������

WWW.

CONTROLLER

MODEL ENGINE

*

Figure 3.1: Functional Schema of Deprecator.

The functional schema of Deprecator Figure: 3.1 . The instrumented
functions used from the website are treated in this way: to let go, to log, to
use the prevention system (marked as *),to cut the normal flow of execution.
The controller using the information extracted can enable the generation of
the model based on these functions.

3.3 System integration

In this section is explained the integration process of the system in the
Chromium Browser analyzing all the choices and solutions used to integrate
it on top of the browser.

The integration process started with the controller choosing the base
folder inside Chromium as destination. This folder contains all the classes
and libraries that constitute the basic blocks used in Chromium. Before
describing in details the process of adding the code of Deprecator to
Chromium is necessary a brief overview of the build system of Chromium.

Google has moved a process of migration more than two years ago from

31

GYP to GN as build system of Chromium, the new build system is twenty
times faster then the previous one and more clear. The files that contain
the instructions to build the code are more readable, making easy to under-
stand the dependency between different modules. The clang compiler used
to compile the code of the browser also offers tools that help the process
of developing a new code. As example there is one tool able to check the
correctness of dependency, a useful tool to prevent the creation of circular
dependency.

Adding Deprecator to Chromium’s code implies the definition of the
characteristics of the new module: the structure for the new code and the
dependency, if there are. The structure of the code is chosen before modi-
fying/creating the relative BUILD.gn file where are specified the character-
istics of the new module. The compiler uses this file to link and compile the
new module within the rest of the browser. There are different structures
for the new code to choose among that are: static library, shared library,
source set or component, all these structures vary the way of linking the
code between modules.

The component structure has been chosen for Deprecator. This
structure is the recommended one for new modules, it makes the new code
compile as a shared library if the build flag is component build is enabled or
otherwise as a static library.
Once defined the structure it is necessary to generate a new build file or
to modify an existing one adding on it the reference of the new code. For
Deprecator has been chosen to modify an existing BUILD.gn file, pre-
cisely the one in the base folder. The choice to modify this file in the folder
base was made also for its visibility within the Chromium source code. As
shown in the Scheme of dependency Figure: 3.2 the code in each rectangle
can include only the code from the rectangles that are at the same level or
under.

Placing the code in the base folder makes it respect the rule of depen-
dency and makes it reachable from the instrumented code, that belongs to
the WebKit part of the browser. Unfortunately this was not sufficient to al-
low the execution of Deprecator because of sandboxes. Chromium has
internal sandboxes that limit the available operations of the executed code
within the browser [10].

The purpose of sandbox is to limit operations at process level that
are classified as possibly dangerous if executed from an untrusted code. The
sandboxed code in Chromium has these limitations: opening new windows
and accessing the disk. Opening new windows from an untrusted code is clas-
sified as possibly dangerous letting the user surf on potentially malicious web

32

Chrome

Content

Net webkit_glue
(src/webkit)

Base WebKit
(src/third_party/WebKit)

V8

We
bK

It
 A

PI

Figure 3.2: Diagram of Dependency in Chromium

pages without the user’s approval. Accessing the disk is limited disallowing
the possibility of stealing files or installing malware in the users’ machine
from untrusted process.

Deprecator in order to work properly needs to “escape” from these
strict requirements accessing the disk to load the configuration file. To over-
come this limitation is necessary to run the Chromium Browser with the
flag --no-sandbox active that disables the internal sandboxes. Due to the
complexity of add our new module to an incredibly complicated system as
Chromium, was necessary some compromises to operate properly.

The purpose of this work is to show the feasibility of a solution and to
introduce the first integrated solution for a problem that every browser
currently has. Hoping that this work will stimulate further investigations
and works yielding to an integrated solution that raises the security of mod-
ern browsers and the awareness of the final users.

3.3.1 Instrumentation

After having introduced Deprecator, its working principles and the rel-
ative interactions between system parts, in this section is explicated the
process of instrumentation, starting from the preliminary data and finaliza-
tion in the modified version of Chromium used to perform the measurement

33

and analysis.
The project is based on the study of the exposed attack surface in modern

browsers especially measuring it as the exposed features. It draws on
existing data sets: one of these is the work of Snyder et al. [26] that moved
the motivation of inspecting deeper this aspect.
Choosing this work was a dutifully choice since it was the most exhaustive
measurement of features in modern browsers focused on how these features
are used among site instead of looking at all the threats spread on the net.

To perform all the measurements of this work the Chromium browser 1

has been used, this choice was driven by the popularity of Google’s browser,
in fact the only Chrome represents the 60% of the total diffusion of browsers [28].
A second but not secondary aspect is that Chromium and Chrome share the
majority of the code’s base, representing the closest example to the most
used browser in the world that can be achieved using an open source
browser.

Choosing Chromium dictated a preprocessing of the data sets that have
been contemplated: considering [26], the first step was a conversion of the
list of features used since they have used the Firefox Browser to perform
their analysis. It was necessary to generate a list of refined features and to
start a matching process of these functions in Chromium that ended in
the positive match of more than one thousand single features. The features
matched in the Chromium’s code lead to the modification of a total of 184
file thought the procedure of instrumentation that is following described.

This preprocessing was necessary to exclude the proprietary functions of
Firefox involved considering that such functions would not find any match in
the Chromium browser. Also all the events have been excluded from the list
of features to be matched, fundamentally for two important factors that
are: first the decision of not considering it as part of the exposed surface
of attack, indeed they are part of the system structure that needs it to
work properly. Second the addition of events would end in an unsustainable
volume of operations that have to be processed from our system that does
not generate meaningful information. An event could trigger actions and
if one of these actions requires a function that is considered part of the
exposed attack surface this one will be inspected from Deprecator,
otherwise if it does not it will be fine to let it proceed without inspection.

1Version: 56,0,2920,0(64bit)

34

iIDL

Func. Standard
-
-

-

-
-

-

MATCH
FINDER REWRITINGtarget

Figure 3.3: Instrumentation schema

As shown in the Figure 3.3, the instrumentation process is divided in
two phases: the match finder and the rewriting.

The first part of the process is responsible of the match functions
in Chromium, it makes use of the IDL 2 as a guide to matching features.
The IDL is the standard language used to define the interface of WebAPI
as a matter of fact it is the standard language used to define application
programming interface. It has been chosen for its flexibility indeed it is
language-independent, enabling the communication from two software
components that do not even share a programming language.

When new APIs are released they come with documentation and IDL
files that are provided as track to implement standard and features, browser
vendors justly follow it to add these new standards and features in the
browser. Even if there are cases where different browsers have used a slight
different implementation [24]. We do not consider these corner cases that
are beyond the scope of this work, taking Chromium as representative in
terms of implementation.

As previously anticipated the match finder uses the IDL definitions to
match features in Chromium. Now are provided more details of how IDL
has been used in the matching phase and how IDL files are elaborated in
Chromium clarifying their usage and purpose. IDL files are processed by
the Chromium compiler to create the JavaScript binding. The binding

2IDL: Interface Definition Language

35

is C++ code, generated automatically, that is used by V8 engine to call
Blink. This generation of code is divided in two main parts: “front-end”
and “back-end”.

The front-end part starts from the IDL file that is given as input for
the lexer that generates the relative tokens as output, subsequently those
token are transformed in an AST graph3 by the parser, finally using the
syntax tree it creates the IR4.
In order to extract valuable information for the matching finder phase
the considered part of this process is the front-end, because it is where
the structure of the code, defined in the IDL files is processed to create the
binding. The piece of software in charge of performing the first part of the
code generation is the idl reader.py, a module of the Chromium compiler
wrote in Python.

The module has been modified to take as input also the list of functions
to be matched, in this way was possible to automate the matching of these
functions parsing all the IDL files of Chromium and finding the match in-
side the browser code. Other than finding the match for these functions, it
was possible to associate structural information for each function as the
return type. Later this additional information has been used to generate the
prevention system and during the rewriting phase to select the proper
hook to be used on each function.

The matching phase gives as result for each feature the exact file
where the feature is implemented, this constitutes the target. Unfortu-
nately this information is not enough to proceed with the instrumentation
of Chromium. To proceed with the instrumentation is needed the file where
is implemented the feature and also the exact location inside the file where
to add the hook. This is the reason why of the second part of the instru-
mentation process.

For the rewriting phase has been used the clang tool to rewrite the
code of Chromium and to insert the controller and the hooks. Clang pro-
vides the tool that supports the global refactoring of the Chromium code,
this refactoring tool takes advantage of the clang’s AST5 to perform the
refactoring. Indeed the clang’s AST is more complete than other AST pro-
duced by different compilers making it suitable for refactoring operations.

The rewriting phase starts from a list of files where to search the
implementation of the considered features. Each target of the list is ana-
lyzed by clang that generates the associated AST graph searching on it the

3AST: Abstract Syntax Tree
4IR: Intermediate representation
5AST: Abstract Syntax Tree

36

requested implementation and proceeds with the instrumentation. Once it
has found the implementation of the feature in the file with the associated
return value, that has been extracted from the previous IDL parsing, the
right hook is selected to instrument the feature.

When the rewriting phase has concluded and so also the instrumen-
tation process has ended the code of Chromium contains the changes ready
to be compiled. Only the files where has been instrumented a function are
recompiled making the instrumentation scale linearly with the numbers of
files modified. All the actions of recompiling and linking on each modified
file are automatically managed by the Chromium compiler that checks the
related BUILD.gn file to ensure that all the rules are respected. At the end
of all the control and once the instrumented code has been properly com-
piled the modified version of Chromium is ready to run taking advantage of
the Deprecator module.

37

38

Chapter 4

Experimental validation

In this chapter are described the experiments performed on Deprecator
to assess the goodness of the approach and the implementation.

First is analyzed the reduction of the attack surface that the module
was able to reduce, enforcing a security policy to the Chromium browser and
the correlated security benefits of reducing the attack surface. The validation
of the approach starts from the determination of where impose this reduction
to the evaluation of the security benefits for the final user.

Finally is evaluated the performance, the stability and usability of
Deprecator, measuring its performance overhead in a real-world scenario,
comparing it with a not instrumented version of Chromium. Due to its
nature the browser is a critical system that needs to process sensitive infor-
mation as quickly as possible. This characteristic dictates the design of the
lightest as possible system. At the same time effortless for the user that could
use a default setting and appreciate the improved security of the browser
without needing to set complicated security policy.

4.1 Attack surface reduction

To determine where to apply the reduction of the exposed attack surface was
necessary to understand how this considered surface behaves on different
sites recording the stimulation of the instrumented functions. As previously
explicated in Section 3.2.2 Deprecator is able to collect data from the
instrumented functions. This ability has permitted to create a map of low-
level functions to a high-level of functionality simplifying its comprehension.
With the collections of this low-level execution traces was possibly to identify
the features used dividing at higher level the part of functionality that could
be restricted without affecting the usability of the browser.

4.1.1 Experimental setup

The aim of the first measurement is to create an appropriate stimulation of
browser instrumented with Deprecator that could simulate the usage of
the majority of the users. The stimulation has been made manually testing
Deprecator on the first 100 sites of the Alexa ranking for a total of 400
minutes of test. Using two different configurations and combining the data
extracted has been generated a generalist model that encapsulates the fea-
tures usage of both the configurations tested. Stimulating the sites means
performing action like reading an article in a news site, watching a video,
searching for an item in an e-commerce site, adding to the cart and starting
a checkout process, download a software from a site, checking the fluctuation
of the dollar, etc.

It has been decided to test Deprecator on the first 100 sites of the
Alexa ranking basing on the fact that the majority of the global web traf-
fic is generated from these websites, taking as representative of the whole
Internet. To ensure that the stimulation was effective, besides choosing the
representative part of the net where testing the system, it has been decided
how much time to spend in interacting with each site. Two minutes was the
time necessary in order to stimulate adequately all the functionalities that
the websites provides. Performing as much interaction as possible within
the site for two minutes has been already proven [21] to be representative.
With a dwell of more than a minute the stimulation encapsulated the normal
scenario of an unauthenticated user that surfs on the net.

The two different configurations that were tested try to represent the
majority of the users: the first one is a plain browser that the inexpert user
uses it standalone to perform the daily activities on the net. Due to the
goal of the test performed the browser used has been instrumented with
Deprecator to record the stimulation performed. The instrumentation is
a transparent modification for the user, it does not change any aspect of the
visual interface and without knowing that the browser used is instrumented,
the user could not realize it. The second configuration tested is also this
one an instrumented version of Chromium but with the addition of two
popular extensions: Ublock and Ghostery. With the second configuration has
been tried to embrace all the users that are more conscious of the privacy
and security risks, users that have decided to use extensions that are able
to mitigate threats that could bump into surfing the net. Nowadays for a
common user the extensions are the only tool easily available to limit the
possible threats of the net, without scarifying the usability of a common
browser.

40

For both the measurements, the first with the plain browser and the
second with the addition of the extensions, has been followed the same pro-
cedure of interaction described above. With these two measurements was
possible to extract a model for each Website using the instrumented fea-
tures used when the website is visited from an unauthenticated users. From
the data extracted was possible to highlight different behaviors of Websites
based on the configuration that requested the site. Indeed some functions
were used only by one of the two tested configurations. As example the
Performance timeline standard has been used only when the browser does
not have any extension installed. The interesting behavior is that Websites
stimulate differently the browsers’ features when the user has extensions
installed, even without showing different graphics and functionality. This
result shows that Websites react differently based on the browsers’ configu-
rations that perform the request.

4.1.2 Data elaboration

The data extracted from Deprecator on each site is the chronological us-
age of features during the stimulation of each website. The file size generated
from Deprecator varies among Websites from 3,8MB to 171MB, giving
as result a total of 13 GB of files to be elaborated. In order to extract the
information, the files are processed compressing the information. The com-
pression of the information has been done by giving as input the files to
a Python program the model.py that elaborates the extracted data in two
phases. The first phase of the elaboration takes as input the 13GB of files to
be elaborated, working site by site it will extract the following information:

• Name of the site

– Standards used
– Standards unused
– Standards used only without extensions
– Standards used only with extension
– Number of invocation on each function without extension
– Number of invocation on each function with extension

Using this information was possible to analyze the behavior of standards
on each site understanding how standards have been used and their impor-
tance. Following in the Figure: 4.1 is showed the number of function calls
associated with the standards used that has been recorded from Depreca-
tor during one of the test performed.

41

0 0.5 1 1.5 2 2.5 3 3.5
·105

HTML
DOM Level 1

Resolution Time

Navigation Timing
Non-Standard

DOM Level 2 Events
DOM Level 2 Core

CSSOM View Module
SVG 1.1 Second Edition

DOM
DOM Level 3 Core
DOM Level 2 Style

HTML 5
CSS Object Model CSSOM

Page Visibility
DOM Level 2 HTML

HTML-History Interface
HTML-The canvas element

HTML-Plugins
Web Cryptography API

3.62 · 105
29,950

2,667

14,349
11,612

5,444
3,608

2,625
2,045
1,936
1,798
1,306
1,267
489
386
298
204
115
72
67

#Function call

1

Figure 4.1: Number of function call on the first 20 most used standards

The schema shows the first twenty most used standards that have been
measured. This particular schema of the standard usage is relative to google.com
tested without extensions. On each of the measurements performed the data
extracted has been analyzed to better understand the importance of the
standards.

As it is clear from the schema, the standards with the higher number of
function calls are the most used standards that has been recorded during the
stimulation of the Web page. Analyzing the data extracted was clear that
disabling the standard with the higher number of calls would most probably
end in a error, making unreachable the Web site requested. Another analysis
that could be extracted from this schema is that the majority of the functions
calls are condensed only in a small portion of the standards.

These data show and confirm the hypothesis that, in order to deliver
good service, the websites rely on original contents. The majority of the
Web pages do not use the sophisticated interaction enabled by the multiple
standards included in the browser code. This inactivity leaves a big portion
of the code unused but available to malicious actors that are ready to use
all the possibilities available to accomplish they malicious intention.

42

For the second phase the model.py now takes as input the information
generated from the first phase, a file of 10MB, and generates a global model
of behavior based on the instrumented functions considered. The model
created is organized as follows:

• Standards always used

• Standards never unused

• Invocation range on each function without extensions

• Invocation range on each function with extensions

When the second phase of compression is completed the program gives
as result a model of 161KB that encapsulated the general behavior observed
from the two measurements. A compressed model more readable and under-
standable that enables the generation of a general policy for Deprecator.

4.1.3 Result

Using the information extracted from Deprecator and comparing with
the previous result from [27] was possible to generate the model that has
been used in the default configuration. The model generated disabled 25
standards over the 71 considered and their features that were considered as
superfluous or potentially dangerous for the majority of the websites tested.
For the extended overview of the standards restricted in the Appendix A is
provided the complete list of standard restricted.

To express the security benefit gained has been used a statistical ap-
proach, indeed even well written code, as the Chromium code, is not ex-
cepted to contain defects/bugs, some software engineers estimate the defect
density to be 3-6 per thousand lines of code [16, 25]. To have a measure of
the benefit introduced, the number of lines of each instrumented function
of the instrumented standard has been calculated by a manual inspection of
the code.

In conclusion Deprecator was able to exclude 5,419 lines of code with
an estimation of 27 defects/bugs excluded from the browser. The obtained
result is even more valuable if we consider that reducing the attack sur-
face, reduces as well the odds of an attacker of exploiting a vulnerability
successfully.

43

4.2 Performance overhead

The addiction of Deprecator as an internal module of Chromium intro-
duced an overhead in the execution of the browser due to the communication
between its system parts. To quantify this overhead a series of test in a real
scenario has been performed evaluating the performance of the instrumented
browser against a not instrumented version of Chromium.

4.2.1 Page load time

To evaluate the impact of Deprecator in a real scenario of usage has been
considered the minimal daily activity performed within the browser that is,
loading a Web page. The loading time of web pages is the minimal action
repeated over and over during the day by the users. This action is able to
show the effective capacity of the browser to be responsive supporting the
interactions of the users.

To measure the impact of Deprecator in Chromium has been manually
measured the load time of the first 100 Web pages according to the Alexa
ranking. Each Web page has been firstly loaded by the Chromium browser
instrumented with Deprecator enforcing the security policy defined in
the Default configuration. The second measurement has been performed
using the unmodified version of Chromium to load the Web pages.

To measure the loading time of Web pages the Page load time [2] has
been used, a popular extension used among Web developers to measure the
performance of web page. The extension calculate the loading time of a Web
page using the high resolution time API. The extension shows in each loaded
page the time consumed in performing the necessary actions to load the page
as: connect, request, response, load the DOM1 and load the events. For the
purpose of the tests has been considered only the total time necessitating to
load the Web page.

The measurements performed on each web page are two: one cold start
and one warm load. The total measurements performed on each Web page
are two on both the configurations, two with the instrumented browser and
two with the normal browser, for a total of 400 pages loaded to compare the
relative performance. Before each cold measurements, for both the configu-
rations, the Chromium browser has been cleaned removing all the temporary
data as cache, history and cookies. For the warm load after the first cold
start of the page each Web page has been refreshed to evaluate the per-
formance of the browser. In this way was possible to quantify the impact

1DOM: Document Object Model

44

of the cache in the page load and how the addition of Deprecator could
impact the refresh of pages. Following is showed the load time for the first
20 Web pages of the Alexa using the instrumented browser and the browser
unmodified. A more extensive overview of the data extracted is provided in
the Appendix B.

go
ogl

e.c
om

you
tub

e.c
om

fac
eb

oo
k.c

om

ba
idu

.co
m

wiki
pe

dia
.or

g

yah
oo

.co
m

red
dit

.co
m

go
ogl

e.c
o.i

n
qq

.co
m

tao
ba

o.c
om

am
azo

n.c
om

tw
itt

er.
com

go
ogl

e.c
o.j

p

tm
all

.co
m

soh
u.c

om

liv
e.c

om
vk

.co
m

ins
tag

ram
.co

m

sin
a.c

om
.cn

360
.cn

2

4

6

8

10

12

14

16

Se
co

nd
s

without cache
with cache

1

(a) Load time of Web page with Deprecator

go
ogl

e.c
om

you
tub

e.c
om

fac
eb

oo
k.c

om

ba
idu

.co
m

wiki
pe

dia
.or

g

yah
oo

.co
m

red
dit

.co
m

go
ogl

e.c
o.i

n
qq

.co
m

tao
ba

o.c
om

am
azo

n.c
om

tw
itt

er.
com

go
ogl

e.c
o.j

p

tm
all

.co
m

soh
u.c

om

liv
e.c

om
vk

.co
m

ins
tag

ram
.co

m

sin
a.c

om
.cn

360
.cn

5

10

15

20

Se
co

nd
s

without cache
with cache

1

(b) Load time of Web page with Chromium

Figure 4.2: Comparison of the first 20 Web pages load time between Deprecator
and Chromium

45

As shown in the Figure 4.2 Deprecator is able to arise the security
of the browser, enforcing the default policy, and is still able to hide its
execution overhead behind the performance advantage gained due to the
code executions avoided. Indeed Deprecator, using its prevention system,
disables the functions that are classified as useless or potentially dangerous
and reduces the numbers of lines executed from the browser. This code
avoidance ends in a general improvement of performance, as it has been
demonstrate from the test conducted.

In the following Table: 4.1 is reported the total time necessitating to
load the first 100 sites of the Alexa ranking from each configuration. Also is
quantified by the percentage the comparison of the two configuration tested,
comparing the total time necessitating for Deprecator to load the Web
pages in both scenarios, with cache and without cache.

Browser configuration Deprecator Chromium
Without cache With cache Without cache With cache

Load time 304.72s 120.44s 404.91s 176.23s
Performance 75.25% 68.34% 100% 100%

Table 4.1: Total Performance comparison summary

Deprecator has proven to outmatch the performance of the Chromium
browser unmodified, this gain in performance is primary due to the avoid-
ance of a big portion of code. Another factor that has positively contributed
at this performance gain is the necessity of running Chromium with the flag
–no-sandbox. As previously explained Deprecator needs to escape from
this restriction to work properly, but executing the browser in this modality
allows the code executed within the browser to skip all the sandboxes restric-
tions. This is as it is warned from Chromium, at the startup of the browser
with a warning message, a not secure setting that would affect performance
and stability of the entire browser.

Trying not to look at this flagged message of warning, while running the
browser with this setting, it will end up in an avoidance of part of the code
of Chromium, introducing a relative performance improvement. This moved
the curiosity of to inspect further if this intuition has a real foundation. To
find proof of this hypothesis it has been decided to test the normal browser
in the same way of the test previously performed. So it has been performed
the measurement of the load time of the first 100 sites of the Alexa ranking
with the unmodified Chromium browser executed with the flag –no-sandbox
active.

46

Following is reported the Table 4.2 with the summary of the measure-
ments performed:

Browser configuration Chromium without sandbox Chromium with sandbox
Without cache With cache Without cache With cache

Load time 376.67s 243.01s 404.91s 176.23s
Performance 100% 100% 107.49% 72.51%

Table 4.2: Performance comparison of Chromium with sandbox and without sandbox

As partially intuited the avoidance of the internal sandbox gives back
a little improvement in performance, more evident with the cold measure-
ments. This improvement disappears during the warm measurement high-
lighting what was already clear before performing this measurement: to
disable the sandbox is not a good idea. This further measurement was a
meticulousness test to have an unbiased measurement of the performance
gain of Deprecator. Considering the results of the test performed with
the unmodified Chromium version it is possible to extract the final terms of
benefit of using Deprecator that is around 28%.

4.2.2 Extraction of data

All the previous tests performed have measured the ability of Deprecator
to enforce a strict security policy, that is its main purpose, but the system is
also able to extract at run time information. In this section has been tested
the performance of collecting data of Deprecator, it has been already
proven the goodness of the data extracted but now has been tested the
performance of running, enforcing the defined policy and collecting data at
the same time.

As for the previous tests it has been used the same methodology, so
the performance of the system has been tested loading the first 100 sites
of the Alexa ranking and measuring the load time of Web pages. If in the
configuration of Deprecator has been set as active the collection of data
the system starts collecting data in real time from the startup of the browser.
Indeed the trace of execution is updated continuously, this characteristic has
been used to study the instrumented functions and to understand at run
time, the correlation of the functions disabled and how the Web page reacts
to the removal of these functions.

47

Following in the Table:4.3 is reported the summary result of all the tests
performed:

Browser configuration Deprecator Deprecator + Log
Without cache With cache Without cache With cache

Load time 304.72s 120.44s 803.22s 667.06s
Performance 100% 100% 263.59% 553,85%

Table 4.3: Performance comparison of the different modality of Deprecator

As shown from the table, enforcing a defined security policy and col-
lecting data is a heavy task for the system, that introduces a significant
overhead in the execution of the browser.

This modality has to be considered as a sort of debug mode of Depre-
cator, able to show what is going on and how the Web page stimulates the
instrumented functions in real time. This modality has its advantage but
enabling this modality will affect negatively the general performance. The
normal usage of Deprecator is to run only enforcing the security policy.
If a user is willing to understand what is going on with the instrumented
functions the collection of the data could be modified in order to be less
heavy considering the introduction of an interval of log. The system could
receive the interval of log from the configuration file and update the trace
of execution periodically instead of doing it in real time.

4.2.3 Usability and stability

The stability of Deprecator has been tested during the 600 tests per-
formed to measure the performance and the identification of the attack sur-
face reduction. During all the test even if the flag –no-sandbox was active
Deprecator has exhibited an excellent stability and performance. All the
Web pages tested were accessible and able to deliver its functionality, the
only two exceptions are: microsoftonline.com and googleusercontent.com.
These two Web pages were inaccessible due to the nature of the service that
they provide. Indeed they are domains related to personal accounts that are
used to access document loaded on the cloud, sync data and in general per-
form actions related to a specific account. These sites were inaccessible due
to how the crawling has been performed. Indeed the choice of crawling the
site without log in the sites visited was by purpose to simulate a scenario
where the user has not any previous source of trust with the Web page.
This situation is the perfect scenario where the users are prone to adopt a
strict security policy before deciding that the site they are visiting could be

48

classified as a trust source.
The usability of Deprecator is intuitive, once instrumented the browser

and loaded the policy that enforces on the system, it does not require any
further interaction by the users. The management of the configuration is the
only part that requires the users’ interaction. As previously anticipated, the
management of the configuration could be automated with an automatic
subscription to a repository, by setting a refresh rate of the configuration at
the startup of the browser, making all the process effortless. The chance of
changing the configuration at run time or with an automated service enables
an easy development even for a big company, simplifying the diffusion and
the change of the internal security policy.

49

50

Chapter 5

Limitation and future works

In this Chapter are provided the limitations of Deprecator. Some of the
limitations of our work are due to external factors while others to the nature
of the issue treated.

5.1 Browser fingerprinting

Even with a large adoption of Deprecator, the phenomenon of browser
fingerprinting will continue to exist. Indeed as presented in the introduction,
the market behind this phenomenon is large, the techniques adopted have
shown a fast growth in terms of precision and there will still be parts of the
browser or an unintended composition of features that will be able to give
to the trackers sensitive information about the users.

What is reasonable to expect is that with a large adoption of Depre-
cator the majority of the users will configure a restrictive policy with the
consequence of a decrease in the precision of this invasive method. The com-
bination of what has been previously said with a general awareness of the
phenomenon would allow the production of a dense fog between our private
data and the trackers, making harder the role of trackers.

5.2 Limit of the approach

Even if we took in consideration a large set of features to be analyzed, not
all the parts of the browser where covered by this measurement.

The automatization of the instrumentation process is afflicted by one of
the limitations, indeed part of the process is based on the usage of IDL files,
unfortunately, as explained in Section 3.2.1, these files were not designed for
this purpose In a few cases, the choice of using these files made necessary a

51

manual inspection of the code in order to fix the automated instrumentation
and to choose the right hook to use.

Although the overall performance and precision of the instrumentation
process was able to indicate that the approach was heading toward the right
direction, indeed the cases of manual inspection were limited and a better
inclusion of these corner cases will provide a full coverage of them. With
the used approach it is possible to extend the coverage to new features and
new standards with a limited amount of work. Also, the extension of this
approach to other browsers is possible with a restricted amount of work,
adding other browsers to the compatible system of Deprecator.

5.3 Future work

In the future development of Deprecator one of the most relevant aspects
is the adoption of a more sophisticated system able to determine the origin
of a function call. Understanding the context would enable the chance to de-
termine first party or third party inside the code executed from the browser
and to limit only the desired part. This could allow the definition of specific
policies that work site by site, or even iframe by iframe to guarantee the
best experience to the users among every site.

Another improvement of easy adoption could be the possibility to tem-
porarily disable the enforced policy, indeed for the users could be necessary
to disallow a specific policy to access to a system that needs some restricted
features, this process could be automated by an automatic function that
would reset the policy enforced with just one click. This additional function-
ality takes advantage of the high configurability of Deprecator, indeed it
can change the behavior of instrumented functions even at run time.

One desirable future scenario would be the definition of specific security
profiles of Web pages, defined by Web developers and checked by external
authorities. These profiles could be used to show the level of agreement
within the visited site, comparing the security profile defined by the user
and the public security profile of Web pages. These definitions could be
used to understand drifting behavior of well known Web pages using the
security profile where are declared the functionalities necessary from the site
to deliver its functionalities. In this ideal world would start a competition
among Web developers to use the minimum set of features and to deliver
the most engagement user experience possible.

52

Chapter 6

Conclusions

We presented Deprecator, a new module of the Chromium browser able to
customize the browser, that allows the users to customize their own configu-
ration. With the personalization of the configuration the user can determine
which functionalities of the browser to use and what to limit.

Taking advantage of the abilities of our module to record the usage of
the instrumented functionalities we performed a large study of the browsers’
functionalities. The study performed tries to embrace the usage made by the
majority of the users while surfing the web. Using the data collected it was
possible to identify and model the usage of the browsers’ functionalities. The
obtained information from this model has been used to define the default
configuration, where the functionalities of 25 standards over the 71standards
considered have been limited.

To test the goodness of the model we measured the default security policy
on the first 100 sites of the Alexa ranking. The result showed the fully com-
patibility with the sites tested. Even with the restricted set of functionalities,
all the sites were functional and able to provide its functionality. Moreover
the default configuration we provided with the module is only one example
of configuration that can be used with Deprecator. The high possibility
of customizing the configuration allows the definition of even strict security
policies. The management of the configuration file can be both manual, for
the expert users or fully automated to help the inexpert ones.

Our module goes in the reverse trend by removing functionalities, indeed
it focuses in providing just the necessary set of functionalities to the final
user that is free to appreciate a lightweight and also faster browser. Indeed,
from the result of the tests performed, the avoidance of parts of the code,
produces an improvement in the performance of 28% compared with the
unmodified browser. Taking advantage of the designed instrumentation it is

53

possible to provide updates of our module and to integrate it in the future
versions of the Chromium browser.

Thanks to the internal approach our module is undetectable from the
attacker’s point of view. Also, with the limitation of the exposed function-
alities, the browser is able to provide a more secure experience to the users.
With the default configuration we were able to achieve the collateral benefit
of making harder the work of trackers. Indeed in the functionalities limited
by the default configuration have also been included some of the functional-
ities used to track the users.

we so hope with our work to stimulate further investigation that could
possibly produce an integrated solution that could be added in all the mod-
ern browsers.

54

Bibliography

[1] Chrome ad filtering. https://blog.chromium.org/2018/02/

how-chromes-ad-filtering-works.html.

[2] chrome-load-timer. https://github.com/alex-vv/

chrome-load-timer.

[3] Chromium blog. A tale of two Pwnies. https://blog.chromium.org/
2012/06/tale-of-two-pwnies-part-2.html.

[4] Chromium code statistics. https://www.openhub.net/p/chrome/

analyses/latest/languages_summary.

[5] Linux code statistics. https://www.linuxcounter.net/statistics/

kernel.

[6] Tor browser design. https://www.torproject.org/projects/

torbrowser/design/#fingerprinting-linkability.

[7] Tor browser metrics. https://metrics.torproject.org/bandwidth.
html.

[8] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez,
Arvind Narayanan, and Claudia Diaz. The web never forgets: Persis-
tent tracking mechanisms in the wild. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’14, pages 674–689, New York, NY, USA, 2014. ACM.

[9] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses,
Frank Piessens, and Bart Preneel. Fpdetective: dusting the web for
fingerprinters. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 1129–1140. ACM, 2013.

[10] Adam Barth, Collin Jackson, Charles Reis, TGC Team, et al. The
security architecture of the chromium browser. Technical report, 2008.

55

https://blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
https://blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
https://github.com/alex-vv/chrome-load-timer
https://github.com/alex-vv/chrome-load-timer
https://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
https://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://www.linuxcounter.net/statistics/kernel
https://www.linuxcounter.net/statistics/kernel
https://www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://metrics.torproject.org/bandwidth.html
https://metrics.torproject.org/bandwidth.html

[11] Ahmet Salih Buyukkayhan, Kaan Onarlioglu, William K Robertson,
and Engin Kirda. Crossfire: An analysis of firefox extension-reuse vul-
nerabilities. In NDSS, 2016.

[12] Yinzhi Cao, Song Li, and Erik Wijmans. browser fingerprinting via os
and hardware level features. In Proceedings of Network & Distributed
System Security Symposium (NDSS), 2017.

[13] Maciej Ceg?owski. The Website Obesity Crisis. http://idlewords.

com/talks/website_obesity.htm#crisis.

[14] Peter Eckersley. How unique is your web browser? In International
Symposium on Privacy Enhancing Technologies Symposium, pages 1–
18. Springer, 2010.

[15] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-
million-site measurement and analysis. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’16, pages 1388–1401, New York, NY, USA, 2016. ACM.

[16] Les Hatton. Reexamining the fault density-component size connection.
IEEE Softw., 14(2):89–97, March 1997.

[17] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher
Kruegel, Giovanni Vigna, and Vern Paxson. Hulk: Eliciting malicious
behavior in browser extensions. In USENIX Security Symposium, pages
641–654. San Diego, CA, 2014.

[18] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncertain
times. In USENIX Security Symposium, pages 463–480, 2016.

[19] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and
the beast: Diverting modern web browsers to build unique browser
fingerprints. In Security and Privacy (SP), 2016 IEEE Symposium on,
pages 878–894. IEEE, 2016.

[20] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and
Franziska Roesner. Internet jones and the raiders of the lost track-
ers: An archaeological study of web tracking from 1996 to 2016. In
USENIX Security Symposium, 2016.

[21] Chao Liu, Ryen W. White, and Susan Dumais. Understanding
web browsing behaviors through weibull analysis of dwell time. In
Proceedings of the 33rd International ACM SIGIR Conference on

56

http://idlewords.com/talks/website_obesity.htm#crisis
http://idlewords.com/talks/website_obesity.htm#crisis

Research and Development in Information Retrieval, SIGIR ’10, pages
379–386, New York, NY, USA, 2010. ACM.

[22] Rani molla. Global net ad revenue share for digital and mo-
bile 2017. https://www.recode.net/2017/7/24/16020330/

google-digital-mobile-ad-revenue-world-leader-facebook-growth.

[23] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator:
Deceiving fingerprinters with little white lies. In Proceedings of the 24th
International Conference on World Wide Web, pages 820–830. ACM,
2015.

[24] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. Battery
status not included: Assessing privacy in web standards.

[25] Andy Ozment and Stuart E Schechter. Milk or wine: does software
security improve with age? In USENIX Security Symposium, pages
93–104, 2006.

[26] Peter Snyder, Lara Ansari, Cynthia Taylor, and Chris Kanich. Browser
feature usage on the modern web. In Proceedings of the 2016 ACM on
Internet Measurement Conference, pages 97–110. ACM, 2016.

[27] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most websites don’t
need to vibrate: A cost-benefit approach to improving browser security.
CoRR, abs/1708.08510, 2017.

[28] World Wide Web Consortium (W3C). Web browser usage trend.

[29] Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-Tangil, Gi-
anluca Stringhini, William Robertson, and Engin Kirda. Ex-ray: De-
tection of history-leaking browser extensions. In Proceedings of the
33rd Annual Computer Security Applications Conference, pages 590–
602. ACM, 2017.

57

https://www.recode.net/2017/7/24/16020330/google-digital-mobile-ad-revenue-world-leader-facebook-growth
https://www.recode.net/2017/7/24/16020330/google-digital-mobile-ad-revenue-world-leader-facebook-growth

58

Appendix A

Default configuration

In this chapter are showed the standards that have been included in the
Default configuration, the configuration ensures a strict policy that has
proven to arise the security of the system and the privacy of the user while
being fully compatible with the 100 sites of the Alexa ranking tested. If
compared with the policies applied by the normal browser it is a strict
policy but nevertheless the user is free to change it and adopt an even more
restrictive policy, balancing the trade of between security and usability.

Default configuration
Standards Restricted
WebVTT:The Web Video Text Tracks Format X
Beacon X
WebGL Specification X
Web Audio API X
Vibration API X
Media Capture from DOM Elements X
Console API X
UI Events Specification X
DOM Parsing and Serialization X
DeviceOrientation Event Specification X
Shadow DOM X
Performance Timeline Level 2 X
Pointer Lock X
Resource Timing X
Scalable Vector Graphics (SVG) 1.1 (Second Edition) X
Selection API X
MediaStream Recording X
Indexed Database API X

Default configuration
Standards Restricted
High Resolution Time Level 2 X
HTML-Channel Messaging X
HTML-Web Sockets X
Gamepad X
Fullscreen API X
HTML-Web Workers X
Encrypted Media Extensions X
Fetch X
File API X
Geolocation API Specification X
Geometry Interfaces Module Level 1 X
HTML X
Encoding X
HTML-Broadcasting to other browsing contexts X
HTML-The canvas element X
HTML-Plugins X
HTML-Web Storage X
HTML-History Interface X
HTML 5 X
HTML 5.1 X
Document Object Model (DOM) Level 3 XPath Specification X
Document Object Model (DOM) Level 3 Core Specification X
Media Capture and Streams X
CSSOM View Module X
Media Source Extensions X
Document Object Model (DOM) Level 2 Traversal and Range Specification X
Navigation Timing X
Non-Standard X
Page Visibility (Second Edition) X
Performance Timeline X
Document Object Model (DOM) Level 1 Specification X
Document Object Model (DOM) Level 2 Core Specification X
Document Object Model (DOM) Level 2 Events Specification X
Document Object Model (DOM) Level 2 HTML Specification X
Document Object Model (DOM) Level 2 Style Specification X
Selectors API Level 1 X
Service Workers X
The Screen Orientation API X
Timing control for script-based animations X
DOM X
Tracking Preference Expression (DNT) X
URL X

60

Default configuration
Standards Restricted
User Timing Level 2 X
W3C DOM4 X
Battery Status API X
CSS Font Loading Module Level 3 x
CSS Object Model (CSSOM) X
Web Cryptography API X
Web Notifications X
CSS Conditional Rules Module Level 3 X
WebRTC 1.0:Real-time Communication Between Browser X
XMLHttpRequest X
execCommand X

Table A.1: Standard included in the Default configuration

61

62

Appendix B

Full data performance
evaluation

In this chapter are reported the full data collected during the test to mea-
sure the performance of Deprecator. In the first column of the table are
reported the load time of the first 100 sites of the Alexa ranking loaded
with the browser instrumented with Deprecator, the second column of
the table contains the load time measured with the browser instrumented
with Deprecator that other than enforcing a strict policy will also col-
lect the data of the instrumented features in real time. In the second table
are reported the load time performed with the normal browser, in the first
column the load time of the browser executed with the sandbox and in the
second column without the sandbox. The measured load time of each page,
for all the measurements, has been extracted using the extension page load
time.

Web site
Browser configuration

Deprecator Deprecator + Log
Without cache With cache Without cache With cache

1)google.com 0.34s 0.20s 1.09s 0.91s
2)youtube.com 1.94s 0.94s 13.6s 11.1s
3)facebook.com 1.98s 1.05s 2.42s 1.70s
4)baidu.com 3.70s 1.49s 5.64s 1.99s
5)wikipedia.org 0.69s 0.18s 3.01s 2.58s
6)yahoo.com 2.63s 1.49s 25.7s 25.9s
7)reddit.com 2.25s 1.77s 16.8s 7.51s
8)google.co.in 0.28s 0.20s 1.37s 0.96s
9)qq.com 7.96s 2.15s 20.1s 10.2s
10)taobao.com 3.88s 0.54s 5.56s 1.66s
11)amazon.com 4.13s 1.34s 9.45s 8.51s

Web site
Browser configuration

Deprecator Deprecator + Log
Without cache With cache Without cache With cache

12)twitter.com 1.08s 1.06s 2.80s 2.95s
13)google.co.jp 0.68s 0.19s 1.27s 0.99s
14)tmall.com 5.58s 1.66s 6.68s 4.07s
15)sohu.com 6.83s 2.81s 34.6s 35.1s
16)live.com 4.46s 0.42s 4.51s 1.35s
17)vk.com 1.42s 0.32s 4.90s 3.04s
18)instagram.com 1.90s 0.94s 4.63s 4.03s
19)sina.com.cn 15.7s 8.94s 63.2s 58.1s
20)360.cn 8.51s 2.69s 9.86s 5.31s
21)jd.com 4.95s 0.16s 5.57s 1.54s
22)google.de 0.63s 0.18s 1.25s 0.95s
23)google.co.uk 0.63s 0.19s 1.25s 0.95s
24)linkedin.com 1.33s 0.59s 6.95s 5.92s
25)weibo.com 9.92s 2.97s 17.0s 7.15s
26)google.fr 0.65s 0.18s 1.16s 0.94s
27)google.ru 0.68s 0.19s 1.40s 1.02s
28)google.com.br 0.57s 0.18s 1.22s 0.98s
29)yandex.ru 2.57s 1.06s 7.48s 4.36s
30)yahoo.co.jp 11.3s 6.72s 12.3s 11.8s
31)netflix.com 1.46s 0.90s 2.38s 1.73s
32)google.com.hk 0.66s 0.19s 1.28s 0.98s
33)t.co 0.35s 0.19s 0.52s 0.34s
34)hao123.com 8.94s 3.99s 14.6s 12.2s
35)imgur.com 3.53s 1.48s 8.60s 5.61s
36)google.it 0.28s 0.18s 1.07s 0.92s
37)ebay.com 2.48s 1.39s 7.02s 5.46s
38)pornhub.com 2.72s 1.77s 8.77s 7.38s
39)google.es 0.59s 0.26s 1.24s 0.97s
40)detail.tmall.com 3.07s 1.03s 4.02s 2.15s
41)wordpress.com 2.09s 1.29s 7.39s 5.97s
42)msn.com 5.20s 1.22s 13.3s 9.81s
43)aliexpress.com 3.20s 0.83s 9.36s 5.65s
44)bing.com 0.42s 0.62s 1.27s 0.97s
45)tumblr.com 1.98s 0.71s 10.6s 6.31s
46)google.ca 0.63s 0.18s 1.26s 0.96s
47)microsoft.com 0.81s 0.38s 3.79s 3.98s
48)livejasmin.com 3.27s 1.65s 12.4s 10.2s
49)stackoverflow.com 2.04s 0.73s 7.67s 6.73s
50)twitch.tv 2.05s 0.44s 3.87s 3.68s
51)ok.ru 2.29s 0.72s 6.39s 4.67s
52)google.com.mx 0.65s 0.20s 1.24s 0.96s
53)ntd.tv 6.98s 1.87s 22.2s 17.6s
54)onclkds.com 0.76s 0.29s 1.12s 1.07s64

Web site
Browser configuration

Deprecator Deprecator + Log
Without cache With cache Without cache With cache

55)imdb.com 3.94s 1.99s 11.2s 67.5s
56)office.com 1.85s 0.42s 3.42s 1.94s
57)blogspot.com 1.90s 0.32s 3.05s 2.63s
58)mail.ru 4.02s 1.50s 5.50s 4.40s
59)amazon.co.jp 3.83s 3.03s 11.0s 8.54s
60)github.com 2.97s 0.94s 5.81s 4.45s
61)apple.com 1.90s 0.57s 6.93s 5.38s
62)microsoftonline.com / / / /
63)pinterest.com 1.49s 0.84s 4.39s 4.92s
64)diply.com 3.01s 1.77s 4.91s 5.34s
65)tianya.cn 3.29s 1.75s 16.4s 2.90s
66)popads.net 1.92s 0.79s 2.35s 1.51s
67)xvideos.com 1.52s 0.69s 8.42s 4.94s
68)wikia.com 2.59s 1.06s 12.0s 7.93s
69)google.com.tr 0.63s 0.19s 1.23s 0.96s
70)csdn.net 10.3s 2.47s 17.0s 12.1s
71)google.com.au 0.64s 0.30s 1.23s 0.99s
72)service.tmall.com 5.04s 1.0s 6.81s 2.21s
73)alipay.com 9.06s 3.02s 12.2s 7.19s
74)google.com.tw 1.04s 0.18s 1.20s 1.04s
75)whatsapp.com 1.35s 0.64s 3.55s 1.74s
76)paypal.com 1.79s 1.05s 4.88s 3.40s
77)xhamster.com 1.59s 0.59s 5.21s 4.44s
78)adobe.com 3.39s 1.97s 10.4s 8.55s
79)youth.cn 10.5s 2.70s 14.0s 7.94s
80)pixnet.net 5.27s 3.43s 19.5s 15.3s
81)soso.com 2.77s 0.86s 4.41s 5.01s
82)coccoc.com 4.85s 2.67s 8.80s 8.02s
83)txxx.com 4.23s 1.40s 16.3s 13.9s
84)google.pl 0.65s 0.18s 1.23s 0.97s
85)dropbox.com 2.57s 1.06s 8.62s 6.99s
86)bongacams.com 3.31s 1.41s 9.91s 8.19s
87)amazon.de 2.97s 1.02s 11.0s 9.13s
88)login.tmall.com 5.56s 1.09s 6.63s 2.60s
89)googleusercontent.com / / / /
90)porn555.com 4.79s 2.35s 44.6s 33.5s
91)google.co.th 0.65s 0.31s 1.23s 0.98s
92)google.com.eg 0.67s 0.18s 1.32s 0.97s
93)google.com.sa 0.99s 0.18s 1.33s 0.99s

65

Web site
Browser configuration

Deprecator Deprecator + Log
Without cache With cache Without cache With cache

94)fc2.com 1.31s 0.88s 4.79s 3.33s
95)google.com.pk 0.49s 0.20s 1.27s 1.04s
96)china.com 6.30s 3.21s 10.5s 6.87s
97)bbc.co.uk 2.55s 1.14s 6.72s 15.7s
98)craigslist.org 2.03s 1.05s 4.91s 2.67s
99)espn.com 4.50s 1.72s 13.1s 11.0s
100)soundcloud.com 3.08s 1.01s 9.83s 7.09s

Table B.1: Load time of the first 100 site of the Alexa ranking with Deprecator

Web site
Browser configuration

Chromium Chromium without sandbox
Without cache With cache Without cache With cache

1)google.com 0.46 0.18 0.26 0.18
2)youtube.com 3.67 2.69 3.32 2.31
3)facebook.com 1.92 1.29 1.89 1.02
4)baidu.com 3.98 0.54 5.01 0.53
5)wikipedia.org 0.88 0.18 0.56 0.17
6)yahoo.com 3.31 2.09 3.28 2.55
7)reddit.com 2.65 1.94 2.05 2.10
8)google.co.in 0.42 0.38 0.26 0.31
9)qq.com 10.4 9.66 9.67 3.75
10)taobao.com 19.3 1.73 4.05 1.51
11)amazon.com 6.20 4.01 5.09 4.67
12)twitter.com 1.18 1.09 1.26 1.22
13)google.co.jp 0.45 0.34 0.46 0.33
14)tmall.com 6.10 1.91 5.16 1.56
15)sohu.com 20.2 13.5 17.7 13.5
16)live.com 4.65 0.53 4.29 0.67
17)vk.com 1.99 0.74 1.96 0.56
18)instagram.com 1.59 0.74 1.54 0.81
19)sina.com.cn 23.0 13.6 17.6 14.3
20)360.cn 9.52 3.46 9.11 2.19
21)jd.com 9.02 1.36 6.89 1.68
22)google.de 0.69 0.33 0.71 0.35
23)google.co.uk 0.68 0.46 1.19 0.41
24)linkedin.com 1.64 0.49 1.18 0.53

66

Web site
Browser configuration

Chromium Chromium without sandbox
Without cache With cache Without cache With cache

25)weibo.com 8.93 3.30 9.60 2.89
26)google.fr 1.14 0.33 0.65 0.31
27)google.ru 0.67 0.22 0.69 0.40
28)google.com.br 1.12 0.34 1.18 0.54
29)yandex.ru 2.04 1.04 2.11 1.10
30)yahoo.co.jp 8.20 4.45 8.87 3.93
31)netflix.com 1.91 0.67 1.54 0.84
32)google.com.hk 0.69 0.35 1.01 0.36
33)t.co 0.35 0.19 0.35 0.20
34)hao123.com 9.65 4.49 9.40 3.08
35)imgur.com 2.74 1.20 3.19 1.00
36)google.it 0.50 0.37 0.47 0.32
37)ebay.com 2.62 1.67 2.42 1.17
38)pornhub.com 2.51 1.95 2.51 1.62
39)google.es 0.66 0.45 0.68 0.41
40)detail.tmall.com 3.37 1.16 3.77 1.24
41)wordpress.com 22.3 7.35 2.03 0.88
42)msn.com 4.46 1.17 2.63 1.47
43)aliexpress.com 3.64 1.50 3.46 1.37
44)bing.com 0.41 0.70 0.46 0.65
45)tumblr.com 6.06 1.69 6.79 1.73
46)google.ca 0.67 0.36 0.97 0.40
47)microsoft.com 1.26 0.61 1.83 0.55
48)livejasmin.com 4.23 2.31 4.06 1.85
49)stackoverflow.com 1.97 1.10 2.12 0.76
50)twitch.tv 2.09 0.69 3.67 1.03
51)ok.ru 2.48 0.71 2.13 0.92
52)google.com.mx 1.00 0.33 0.69 0.39
53)ntd.tv 8.07 6.95 8.50 4.98
54)onclkds.com 0.86 0.25 0.45 0.25
55)imdb.com 4.21 2.48 4.94 2.45
56)office.com 1.80 0.44 1.08 0.44
57)blogspot.com 1.95 0.35 1.66 0.37
58)mail.ru 3.85 1.54 3.84 1.41
59)amazon.co.jp 5.80 2.06 5.59 2.20
60)github.com 3.36 0.80 4.54 0.81
61)apple.com 1.63 0.48 2.24 0.54
62)microsoftonline.com / / / /
63)pinterest.com 4.15 2.32 3.26 2.35

67

Web site
Browser configuration

Chromium Chromium without sandbox
Without cache With cache Without cache With cache

64)diply.com 4.63 1.46 4.82 1.50
65)tianya.cn 4.36 1.60 9.42 2.22
66)popads.net 1.83 0.33 1.99 1.07
67)xvideos.com 1.59 0.75 1.63 0.60
68)wikia.com 1.86 1.27 3.13 1.37
69)google.com.tr 0.67 0.35 1.11 0.37
70)csdn.net 10.1 2.56 10.1 2.86
71)google.com.au 0.69 0.33 0.78 0.54
72)service.tmall.com 5.06 1.02 3.69 1.42
73)alipay.com 8.75 3.02 12.9 2.98
74)google.com.tw 1.02 0.33 0.80 0.84
75)whatsapp.com 1.21 0.46 1.22 0.32
76)paypal.com 1.52 1.24 1.60 0.80
77)xhamster.com 1.52 0.51 1.65 0.62
78)adobe.com 3.43 1.37 3.43 1.59
79)youth.cn 11.4 3.39 11.1 2.21
80)pixnet.net 13.9 4.34 10.6 4.39
81)soso.com 2.46 0.86 2.81 0.87
82)coccoc.com 5.21 1.69 5.68 1.74
83)txxx.com 3.92 1.17 3.80 1.11
84)google.pl 0.65 0.36 1.22 0.20
85)dropbox.com 3.90 1.75 2.88 1.97
86)bongacams.com 3.46 1.57 4.16 1.59
87)amazon.de 4.85 1.55 5.26 1.82
88)login.tmall.com 5.20 1.14 4.59 1.04
89)googleusercontent.com / / / /
90)porn555.com 4.95 3.71 5.17 3.32
91)google.co.th 0.67 0.34 1.21 0.20
92)google.com.eg 0.95 0.33 1.84 0.32
93)google.com.sa 0.98 0.33 0.94 0.18
94)fc2.com 2.75 0.93 3.03 1.06
95)google.com.pk 0.71 0.33 0.93 0.27
96)china.com 6.46 3.14 10.6 2.85
97)bbc.co.uk 2.03 1.20 8.52 1.56
98)craigslist.org 2.05 0.48 2.00 0.49
99)espn.com 9.21 6.60 9.19 4.49
100)soundcloud.com 3.71 2.81 3.88 1.74

Table B.2: Load time of the first 100 site of the Alexa ranking with Chromium

68

	Ringraziamenti
	Abstract
	Sommario
	Introduction
	Background and Motivation
	Browser evolution
	Threats
	Browser fingerprinting

	Related work
	Countermeasure proposed

	Motivation

	System Approach and Implementation
	Internal vs external
	Deprecator approach

	System Architecture
	The hook
	The controller

	System integration
	Instrumentation

	Experimental validation
	Attack surface reduction
	Experimental setup
	Data elaboration
	Result

	Performance overhead
	Page load time
	Extraction of data
	Usability and stability

	Limitation and future works
	Browser fingerprinting
	Limit of the approach
	Future work

	Conclusions
	Bibliography
	Default configuration
	Full data performance evaluation

